简介概要

基于改进的SVMR的混沌时间序列预测

来源期刊:控制工程2008年第4期

论文作者:郭振凯 宋召青 毛剑琴

文章页码:385 - 388

关键词:二叉树模型;大样本;支持向量机回归;混沌时间序列;

摘    要:针对标准支持向量机处理大规模数据集会出现训练速度慢、计算量大的缺点,提出了一种基于二叉树模型的支持向量机回归方法。通过二叉树模型将大样本数据集自适应分解成若干个子集,利用支持向量机分段提出支持向量,再把这些支持向量汇合成一个训练样本集进行训练产生决策函数,并将其应用到混沌时间序列的预测。与标准算法相比,该方法在保证泛化精度一致的前提下,极大地加快了训练速度。

详情信息展示

基于改进的SVMR的混沌时间序列预测

郭振凯1,宋召青2,毛剑琴1

1. 北京航空航天大学第七研究室2. 海军航空工程学院控制工程系

摘 要:针对标准支持向量机处理大规模数据集会出现训练速度慢、计算量大的缺点,提出了一种基于二叉树模型的支持向量机回归方法。通过二叉树模型将大样本数据集自适应分解成若干个子集,利用支持向量机分段提出支持向量,再把这些支持向量汇合成一个训练样本集进行训练产生决策函数,并将其应用到混沌时间序列的预测。与标准算法相比,该方法在保证泛化精度一致的前提下,极大地加快了训练速度。

关键词:二叉树模型;大样本;支持向量机回归;混沌时间序列;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号