简介概要

Changes of Tempering Microstructure and Properties of Fe-Cr-V-Ni-Mn-C Cast Alloys

来源期刊:材料热处理学报2004年第5期

论文作者:ZHANG Yang WANG Yue-hua ZHANG Zhan-ping LIU Yan-xia MA Yong-qing

关键词:Fe-Cr-V-Ni-Mn-C alloy; tempering process; transformation; property;

摘    要:The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200℃ the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350℃ and the retained austenite decomposes almost until tempering at 560℃. When tempering at 600℃, the retained austenite in the alloys all decomposes. At 560℃ the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3~1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.

详情信息展示

Changes of Tempering Microstructure and Properties of Fe-Cr-V-Ni-Mn-C Cast Alloys

ZHANG Yang1,WANG Yue-hua2,ZHANG Zhan-ping1,LIU Yan-xia1,MA Yong-qing1

(1.Institute of Materials and Technology, Dalian Maritime University, Dalian, China;
2.Department of Physics, Liaoning University, Shenyang, China)

摘要:The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200℃ the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350℃ and the retained austenite decomposes almost until tempering at 560℃. When tempering at 600℃, the retained austenite in the alloys all decomposes. At 560℃ the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3~1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.

关键词:Fe-Cr-V-Ni-Mn-C alloy; tempering process; transformation; property;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号