机床主轴温度测点的K-means优化及试验
来源期刊:机械设计与制造2018年第5期
论文作者:周成一 庄丽阳 袁江
文章页码:41 - 90
关键词:主轴;K-means算法;Pearson相关系数;测点优化;
摘 要:针对机床热误差补偿技术中温度测点的优化选择,提出一种基于K-means算法和Pearson相关系数相结合的方法。通过K-means算法将不同位置测点的温度进行聚类,用Pearson相关系数计算温度与主轴热误差之间的相关性,从每一类别中选出一个最优测点组成最优测点组合,并对最优测点处的结果进行热误差建模。在立式加工中心VMC850E上对该方法进行了试验验证,将温度测点的数量由8个减少至2个。经方差分析和F检验,验证了最优测点处的温度与热变形之间显著线性,模型可靠。
周成一1,庄丽阳1,袁江1
1. 南通大学机械工程学院
摘 要:针对机床热误差补偿技术中温度测点的优化选择,提出一种基于K-means算法和Pearson相关系数相结合的方法。通过K-means算法将不同位置测点的温度进行聚类,用Pearson相关系数计算温度与主轴热误差之间的相关性,从每一类别中选出一个最优测点组成最优测点组合,并对最优测点处的结果进行热误差建模。在立式加工中心VMC850E上对该方法进行了试验验证,将温度测点的数量由8个减少至2个。经方差分析和F检验,验证了最优测点处的温度与热变形之间显著线性,模型可靠。
关键词:主轴;K-means算法;Pearson相关系数;测点优化;