简介概要

INFLUENCE OF PROCESSING ON SHAPE MEMORY EFFECT OF Fe-Mn-Si-Ni-C-RE SHAPE MEMORY ALLOY

来源期刊:Acta Metallurgica Sinica2003年第5期

论文作者:N.C.Si L.B.Qi Z.H.Jia

Key words:Fe-Mn-Si-Ni-C-RE shape memory alloy; quenching temperature; pre-strain; recovery temperature; shape memory effect;

Abstract: Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with .compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%o). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃), ε→γtransition completed in 1os meanwhile the relative shape recovery ratio of the alloy increased rapidly.

详情信息展示

INFLUENCE OF PROCESSING ON SHAPE MEMORY EFFECT OF Fe-Mn-Si-Ni-C-RE SHAPE MEMORY ALLOY

N.C.Si1,L.B.Qi1,Z.H.Jia1

(1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract:Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with .compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%o). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃), ε→γtransition completed in 1os meanwhile the relative shape recovery ratio of the alloy increased rapidly.

Key words:Fe-Mn-Si-Ni-C-RE shape memory alloy; quenching temperature; pre-strain; recovery temperature; shape memory effect;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号