简介概要

高速列车海量数据故障分析系统研究

来源期刊:控制工程2020年第10期

论文作者:解军帅 徐泉 秦泗钊

文章页码:1795 - 1801

关键词:高速列车;故障诊断;大数据;分布式并行算法;

摘    要:高速列车速度快,传感器采集的频率高,数据更新速度快,因此采集到的数据量大,对故障诊断系统的数据存储、管理和分析能力提出了巨大的挑战。针对目前的高速列车故障诊断系统难以有效处理海量数据的情况,设计了一种基于大数据的高速列车海量数据故障分析系统。采用当前流行的大数据处理工具构建了能够处理海量高铁数据的大数据基础支撑平台,能够高效的存储、管理高铁的海量传感器数据。并且针对传统故障诊断方法在海量数据的时候建模速度很慢甚至无法建模求解的问题,在大数据基础支撑平台的基础上研究了能够对海量高铁数据进行建模的分布式算法,提高了海量高铁数据故障建模的效率。最后通过Speedup、Sizeup、Scaleup这3个性能指标对系统集成的PCA故障建模算法(以分布式PCA故障建模算法为例)的效率进行验证,验证结果表明系统中的分布式算法在3个性能指标上都有良好的表现,能够有效进行大数据量的故障分析,为高速列车的故障诊断提供可靠的保证。

详情信息展示

高速列车海量数据故障分析系统研究

解军帅1,徐泉1,秦泗钊1

1. 东北大学流程工业综合自动化国家重点实验室

摘 要:高速列车速度快,传感器采集的频率高,数据更新速度快,因此采集到的数据量大,对故障诊断系统的数据存储、管理和分析能力提出了巨大的挑战。针对目前的高速列车故障诊断系统难以有效处理海量数据的情况,设计了一种基于大数据的高速列车海量数据故障分析系统。采用当前流行的大数据处理工具构建了能够处理海量高铁数据的大数据基础支撑平台,能够高效的存储、管理高铁的海量传感器数据。并且针对传统故障诊断方法在海量数据的时候建模速度很慢甚至无法建模求解的问题,在大数据基础支撑平台的基础上研究了能够对海量高铁数据进行建模的分布式算法,提高了海量高铁数据故障建模的效率。最后通过Speedup、Sizeup、Scaleup这3个性能指标对系统集成的PCA故障建模算法(以分布式PCA故障建模算法为例)的效率进行验证,验证结果表明系统中的分布式算法在3个性能指标上都有良好的表现,能够有效进行大数据量的故障分析,为高速列车的故障诊断提供可靠的保证。

关键词:高速列车;故障诊断;大数据;分布式并行算法;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号