简介概要

基于机理和数据驱动的转炉输入——输出混合模型

来源期刊:有色金属科学与工程2018年第2期

论文作者:刘远洋 贺东风 冯凯 鲁晓旭

文章页码:13 - 18

关键词:转炉;数据驱动;输入-输出;神经网络;

摘    要:为了实现能量流网络的精细化控制,建立了基于机理和数据驱动的转炉输入-输出模型.对转炉工序进行物质的输入和输出解析,根据实际生产数据,利用数理统计和回归的方法,得到转炉冶炼相关参数,包括:氧气利用率、炉渣碱度、渣中氧化镁含量、钢水终点氧含量、转炉热效率.进而利用冶炼机理以转炉冶炼的铁水和废钢数据,以及目标钢水的成分和温度为输入量,计算得到吹氧量、造渣剂加入等信息作为模型的输出量.根据机理模型计算的部分输出参数,利用神经网络预测钢水终点温度,并与机理模型采用的目标钢水温度进行对比,进而对机理模型进行校正,以提高模型的精确度.采用C#语言将模型程序化,模型计算结果表明,相同误差范围内,混合模型的石灰加入量、轻烧白云石加入量、氧化球团加入量命中率相较于机理模型分别提高了11.1%、8.3%、8.3%.

详情信息展示

基于机理和数据驱动的转炉输入——输出混合模型

刘远洋,贺东风,冯凯,鲁晓旭

北京科技大学冶金与生态工程学院

摘 要:为了实现能量流网络的精细化控制,建立了基于机理和数据驱动的转炉输入-输出模型.对转炉工序进行物质的输入和输出解析,根据实际生产数据,利用数理统计和回归的方法,得到转炉冶炼相关参数,包括:氧气利用率、炉渣碱度、渣中氧化镁含量、钢水终点氧含量、转炉热效率.进而利用冶炼机理以转炉冶炼的铁水和废钢数据,以及目标钢水的成分和温度为输入量,计算得到吹氧量、造渣剂加入等信息作为模型的输出量.根据机理模型计算的部分输出参数,利用神经网络预测钢水终点温度,并与机理模型采用的目标钢水温度进行对比,进而对机理模型进行校正,以提高模型的精确度.采用C#语言将模型程序化,模型计算结果表明,相同误差范围内,混合模型的石灰加入量、轻烧白云石加入量、氧化球团加入量命中率相较于机理模型分别提高了11.1%、8.3%、8.3%.

关键词:转炉;数据驱动;输入-输出;神经网络;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号