简介概要

C/C复合材料孔隙结构的研究进展

来源期刊:材料导报2019年第13期

论文作者:樊凯 卢雪峰 吕凯明 钱坤

文章页码:2184 - 2190

关键词:C/C复合材料;孔隙结构;致密化过程;抗氧化烧蚀性能;

摘    要:孔隙作为C/C复合材料结构中的重要组成部分,直接影响复合材料的致密化过程及其力学、氧化、烧蚀等性能,并赋予C/C复合材料许多潜在功能。C/C复合材料的致密化过程是基体炭不断填充碳纤维预制体内部孔隙的过程。从C/C复合材料的制备原理及工艺方面来说,C/C复合材料通常需要在碳氢气体若干个连续热分解周期下或在树脂、沥青等液相前驱体多个浸渍炭化循环下获得。不同结构的碳纤维预制体内部纤维和纤维束的交织及取向排列各异,导致C/C复合材料内部孔隙大小及形状、孔隙分布、孔隙贯穿通道等各不相同,进一步导致液相或气相的前驱体浸渍预制体的难易程度、在预制体中的流动路径以及对孔隙的填充状况不尽相同。另外,每个致密化周期内,材料内部致密化程度、孔隙结构变化等均不相同。前驱体在预制体内的填充、炭化后的形态及分布等都会对下一个致密化周期中前驱体的扩散传输产生影响。因此,结构不同的预制体即使具有相同的初始密度,其制备的C/C复合材料也存在明显的性能差异。孔隙对C/C复合材料性能的影响主要表现为材料力学性能及高温环境下材料的氧化、烧蚀行为的变化。在力学性能方面,一方面孔隙的存在减小了材料载荷承受面积,为材料发生形变提供了空间;另一方面,材料内部较大的孔隙或者微孔聚集处在受到外部载荷时会产生应力集中现象。此外,界面间的裂纹会在载荷作用下随着纤维与基体脱粘呈曲折扩展。在高温氧化环境中,大量的纤维束间的孔洞、基体中孔隙以及纤维/基体间的微裂纹将成为氧化气氛的扩散通道,从而加快氧化气体在材料内部的扩散以及碳纤维的氧化,进而导致复合材料迅速氧化失效。因此,需要根据应用环境,合理控制材料的孔隙数量和孔隙结构。本文从孔隙形成原因、孔隙特征表征、孔隙对致密化过程及对材料性能的影响四个方面综述了国内外C/C复合材料孔隙结构的研究现状与进展,以期为深化C/C复合材料孔隙结构的理论研究、拓宽其应用领域奠定基础。

详情信息展示

C/C复合材料孔隙结构的研究进展

樊凯,卢雪峰,吕凯明,钱坤

摘 要:孔隙作为C/C复合材料结构中的重要组成部分,直接影响复合材料的致密化过程及其力学、氧化、烧蚀等性能,并赋予C/C复合材料许多潜在功能。C/C复合材料的致密化过程是基体炭不断填充碳纤维预制体内部孔隙的过程。从C/C复合材料的制备原理及工艺方面来说,C/C复合材料通常需要在碳氢气体若干个连续热分解周期下或在树脂、沥青等液相前驱体多个浸渍炭化循环下获得。不同结构的碳纤维预制体内部纤维和纤维束的交织及取向排列各异,导致C/C复合材料内部孔隙大小及形状、孔隙分布、孔隙贯穿通道等各不相同,进一步导致液相或气相的前驱体浸渍预制体的难易程度、在预制体中的流动路径以及对孔隙的填充状况不尽相同。另外,每个致密化周期内,材料内部致密化程度、孔隙结构变化等均不相同。前驱体在预制体内的填充、炭化后的形态及分布等都会对下一个致密化周期中前驱体的扩散传输产生影响。因此,结构不同的预制体即使具有相同的初始密度,其制备的C/C复合材料也存在明显的性能差异。孔隙对C/C复合材料性能的影响主要表现为材料力学性能及高温环境下材料的氧化、烧蚀行为的变化。在力学性能方面,一方面孔隙的存在减小了材料载荷承受面积,为材料发生形变提供了空间;另一方面,材料内部较大的孔隙或者微孔聚集处在受到外部载荷时会产生应力集中现象。此外,界面间的裂纹会在载荷作用下随着纤维与基体脱粘呈曲折扩展。在高温氧化环境中,大量的纤维束间的孔洞、基体中孔隙以及纤维/基体间的微裂纹将成为氧化气氛的扩散通道,从而加快氧化气体在材料内部的扩散以及碳纤维的氧化,进而导致复合材料迅速氧化失效。因此,需要根据应用环境,合理控制材料的孔隙数量和孔隙结构。本文从孔隙形成原因、孔隙特征表征、孔隙对致密化过程及对材料性能的影响四个方面综述了国内外C/C复合材料孔隙结构的研究现状与进展,以期为深化C/C复合材料孔隙结构的理论研究、拓宽其应用领域奠定基础。

关键词:C/C复合材料;孔隙结构;致密化过程;抗氧化烧蚀性能;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号