简介概要

Recent Advances in Disordered and Nanostructured Carbon Coatings for Superl Ubricity and Wearless Sliding

来源期刊:材料保护2004年增刊第2期

论文作者:ALI Erdemir

关键词:disordered and nanostructured coatings; friction and wear; fundamental mechanisms;

摘    要:Increasingly more demanding and very stringent operating conditions envisioned for future mechanical and tribological systems will certainly require new materials and coatings that are superhard and at the same time self-lubricating.For example, dry machining is a much desired practice in manufacturing sector, but it is currently very difficult to realize mainly because of high friction and severe wear losses. However, recent advances in surface engineering and coating technologies may enable design and production of novel coatings architectures that can combine superhardness with self-lubricating properties in both the disordered or nanostructured forms. Recently developed nearly frictionless carbon films, ultrananocrystalline diamond and carbide derived carbon films can dramatically lower friction and at the same time reduce wear under very harsh sliding conditions. These coatings can be formulated in such a way that they can substantially increase the load-bearing capacity of sliding surfaces and hence improve their resistance to scuffing. It is also possible to design nano-composite coatings that can form self-replenishing and-lubricating tribofilms on their sliding surfaces and thus help increase the overall lubricity of these surfaces. In this paper, an overview of recent advances in disordered and nanostructured carbon films will be presented. Specific examples will be given to demonstrate the superior performance and durability of such novel coatings under a very wide range of tribological conditions. The major emphasis is placed on super low friction carbon films. The fundamental tribological mechanisms that control their exceptional friction and wear behaviors are also discussed.

详情信息展示

Recent Advances in Disordered and Nanostructured Carbon Coatings for Superl Ubricity and Wearless Sliding

ALI Erdemir1

(1.Energy Technology Division,Argonne National Laboratory Argonne, IL 60439 USA)

摘要:Increasingly more demanding and very stringent operating conditions envisioned for future mechanical and tribological systems will certainly require new materials and coatings that are superhard and at the same time self-lubricating.For example, dry machining is a much desired practice in manufacturing sector, but it is currently very difficult to realize mainly because of high friction and severe wear losses. However, recent advances in surface engineering and coating technologies may enable design and production of novel coatings architectures that can combine superhardness with self-lubricating properties in both the disordered or nanostructured forms. Recently developed nearly frictionless carbon films, ultrananocrystalline diamond and carbide derived carbon films can dramatically lower friction and at the same time reduce wear under very harsh sliding conditions. These coatings can be formulated in such a way that they can substantially increase the load-bearing capacity of sliding surfaces and hence improve their resistance to scuffing. It is also possible to design nano-composite coatings that can form self-replenishing and-lubricating tribofilms on their sliding surfaces and thus help increase the overall lubricity of these surfaces. In this paper, an overview of recent advances in disordered and nanostructured carbon films will be presented. Specific examples will be given to demonstrate the superior performance and durability of such novel coatings under a very wide range of tribological conditions. The major emphasis is placed on super low friction carbon films. The fundamental tribological mechanisms that control their exceptional friction and wear behaviors are also discussed.

关键词:disordered and nanostructured coatings; friction and wear; fundamental mechanisms;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号