简介概要

Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第6期

论文作者:刘金鹏 YOU Xiaoqiang 陈楠 杜国平

文章页码:1266 - 1273

摘    要:BaTiO3/epoxy composites consisting of two three-dimensionally interpenetrating networks of BaTiO3 and epoxy phases were prepared using a new approach. The BaTiO3/epoxy composites exhibit a colossal dielectric constant, low dielectric loss and high flexural strength. In the BaTiO3 networks, chemically bonded grain boundaries between neighboring BaTiO3 grains were established, and they are responsible for the colossal dielectric constant and high flexural strength of the BaTiO3/epoxy composites. Furthermore, unlike the conventional ceramic/polymer composites, this approach also makes high loadings of BaTiO3 contents possible for the BaTiO3/epoxy composites without compromising their high flexural strength.

详情信息展示

Fabrication of BaTiO3/Epoxy Composites Exhibiting Large Dielectric Constant, Low Dielectric Loss and High Flexural Strength

刘金鹏,YOU Xiaoqiang,陈楠,杜国平

School of Materials Science and Engineering, Nanchang University

摘 要:BaTiO3/epoxy composites consisting of two three-dimensionally interpenetrating networks of BaTiO3 and epoxy phases were prepared using a new approach. The BaTiO3/epoxy composites exhibit a colossal dielectric constant, low dielectric loss and high flexural strength. In the BaTiO3 networks, chemically bonded grain boundaries between neighboring BaTiO3 grains were established, and they are responsible for the colossal dielectric constant and high flexural strength of the BaTiO3/epoxy composites. Furthermore, unlike the conventional ceramic/polymer composites, this approach also makes high loadings of BaTiO3 contents possible for the BaTiO3/epoxy composites without compromising their high flexural strength.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号