简介概要

RBF神经网络补偿的并联机器人控制研究

来源期刊:机械设计与制造2018年第3期

论文作者:彭志文 高宏力 梁超 文刚

文章页码:252 - 513

关键词:Delta并联机器人;计算力矩;RBF神经网络;Simmechanics;

摘    要:为了实现对三自由度Delta并联机器人更精确的轨迹跟踪控制,对并联机构的动力学建模不确定性进行研究,提出了计算力矩控制基础上的RBF神经网络在线补偿控制策略。利用Lyapunov理论推导了神经网络在线权值自适应律,保证了系统稳定性。运用RBF神经网络在线自学习系统的不确定性,提高了控制效率同时增加算法的自适应性。在Simmechanics中建立系统物理模型并在Simulink中设计控制器,之后进行Simulimk/Simmechanics联合仿真,结果表明算法优于计算力矩控制,可以有效减小跟踪误差的收敛半径,实现对目标轨迹的准确跟踪。

详情信息展示

RBF神经网络补偿的并联机器人控制研究

彭志文,高宏力,梁超,文刚

西南交通大学机械工程学院

摘 要:为了实现对三自由度Delta并联机器人更精确的轨迹跟踪控制,对并联机构的动力学建模不确定性进行研究,提出了计算力矩控制基础上的RBF神经网络在线补偿控制策略。利用Lyapunov理论推导了神经网络在线权值自适应律,保证了系统稳定性。运用RBF神经网络在线自学习系统的不确定性,提高了控制效率同时增加算法的自适应性。在Simmechanics中建立系统物理模型并在Simulink中设计控制器,之后进行Simulimk/Simmechanics联合仿真,结果表明算法优于计算力矩控制,可以有效减小跟踪误差的收敛半径,实现对目标轨迹的准确跟踪。

关键词:Delta并联机器人;计算力矩;RBF神经网络;Simmechanics;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号