基于测井参数的煤系烃源岩总有机碳含量预测模型
来源期刊:煤炭学报2017年第5期
论文作者:王攀 彭苏萍 杜文凤 冯飞胜
文章页码:1266 - 1276
关键词:煤系烃源岩;总有机碳含量;测井;MIV;遗传算法;BP神经网络;
摘 要:复杂沉积环境下,烃源岩物性差异较大。经相关性分析揭示了煤系烃源岩TOC含量与各测井参数间存在相关性差异较大、各测井参数间含有互相关关系的特点。采用平均影响值(MIV)方法对测井参数进行筛选,筛选后的测井参数进入最终的BP神经网络建模,从而有效地规避了测井信息间的非相互独立性导致的模型预测误差增大及建模时间增加。依据研究区实验分析的TOC含量数据,分别建立适用于煤系烃源岩的Δlog R,BP神经网络和遗传算法(GA)优化的BP神经网络TOC含量预测模型。对模型试算分析,结果表明:GA改进后的BP神经网络模型预测效果最好,稳定性强,受烃源岩非均质性影响程度小,可以精细地反映煤系烃源岩TOC含量的细微变化。
王攀,彭苏萍,杜文凤,冯飞胜
中国矿业大学(北京)煤炭资源与安全开采国家重点实验室
摘 要:复杂沉积环境下,烃源岩物性差异较大。经相关性分析揭示了煤系烃源岩TOC含量与各测井参数间存在相关性差异较大、各测井参数间含有互相关关系的特点。采用平均影响值(MIV)方法对测井参数进行筛选,筛选后的测井参数进入最终的BP神经网络建模,从而有效地规避了测井信息间的非相互独立性导致的模型预测误差增大及建模时间增加。依据研究区实验分析的TOC含量数据,分别建立适用于煤系烃源岩的Δlog R,BP神经网络和遗传算法(GA)优化的BP神经网络TOC含量预测模型。对模型试算分析,结果表明:GA改进后的BP神经网络模型预测效果最好,稳定性强,受烃源岩非均质性影响程度小,可以精细地反映煤系烃源岩TOC含量的细微变化。
关键词:煤系烃源岩;总有机碳含量;测井;MIV;遗传算法;BP神经网络;