Effect of Zr on microstructure and properties of Cu–15Cr alloy

来源期刊:中南大学学报(英文版)2017年第12期

论文作者:毕莉明 田伟

文章页码:2757 - 2766

Key words:Cu–Cr–Zr alloy; in-situ composites; isothermal annealing; CuZr intermetallic compounds; mechanical properties

Abstract: In order to study the effect of Zr on the microstructure and isothermal annealing performance of Cu–Cr in situ composites, Cu–15Cr and Cu–15Cr–0.24Zr alloys were prepared by means of vacuum medium frequency induction melting technology. The two kinds of test alloys with deformation of 3.79 were subjected to isothermal annealing test. The effects of Zr on the as-cast microstructure, the isothermal annealing structure and the tensile fracture morphology of Cu–15Cr alloy were studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results show that the addition of Zr leads to the formation of homogeneous and fine CuZr intermetallic compounds, which suppresses the formation electron microscopy of eutectic Cr phase and makes the eutectic Cr content much lower than that of Cu–15Cr alloy. The recrystallization temperature of the Cu matrix is increased, and it is maintained at a fine equiaxed crystal at 400 °C. After isothermal annealing at 400 °C for 220 h, the tensile strength, electrical conductivity and elongation of the test alloy containing Zr were 720 MPa, 68% IACS and 6.7%, respectively; while the tensile strength, electrical conductivity and elongation of the test alloys without Zr were 488 MPa, 70% IACS and 12.4%, respectively.

Cite this article as: TIAN Wei, BI Li-ming. Effect of Zr on microstructure and properties of Cu–15Cr alloy [J]. Journal of Central South University, 2017, 24(12): 2757–2766. DOI:https://doi.org/10.1007/s11771-017-3689-0.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号