Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD
来源期刊:Acta Metallurgica Sinica2018年第8期
论文作者:Gang Liu Shi-Lei Li Hai-Long Zhang Xi-Tao Wang Yan-Li Wang
文章页码:798 - 806
摘 要:The effect of thermal aging on phase transformation and impact toughness of an as-cast duplex stainless steel was investigated at room temperature. After long-term thermal aging, the impact toughness decreases significantly and the cracks initiate and propagate more easily. The plastic deformation ability of the ferrite phase decreases after thermal aging,which leads to the degradation of impact toughness. High stress concentration occurs on the grain boundaries of the austenite phase in the aged materials. Meanwhile, high-stress concentration areas are also observed in the austenite phase near the grain boundaries. After long-term thermal aging, pinned dislocations in ferrite and along phase boundaries lead to the high stress concentration. Micro-cracks preferentially initiate in the ferrite phase and propagate via separation of phase boundaries. The blocking influences of spinodal decomposition precipitates and G-phase precipitates are stronger than the effect of grain boundaries and phase boundaries on the dislocation movement.
Gang Liu1,Shi-Lei Li1,Hai-Long Zhang1,Xi-Tao Wang2,Yan-Li Wang1
1. State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing2. Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing
摘 要:The effect of thermal aging on phase transformation and impact toughness of an as-cast duplex stainless steel was investigated at room temperature. After long-term thermal aging, the impact toughness decreases significantly and the cracks initiate and propagate more easily. The plastic deformation ability of the ferrite phase decreases after thermal aging,which leads to the degradation of impact toughness. High stress concentration occurs on the grain boundaries of the austenite phase in the aged materials. Meanwhile, high-stress concentration areas are also observed in the austenite phase near the grain boundaries. After long-term thermal aging, pinned dislocations in ferrite and along phase boundaries lead to the high stress concentration. Micro-cracks preferentially initiate in the ferrite phase and propagate via separation of phase boundaries. The blocking influences of spinodal decomposition precipitates and G-phase precipitates are stronger than the effect of grain boundaries and phase boundaries on the dislocation movement.
关键词: