非均质地基中V-T联合受荷桩承载力分析

来源期刊:中南大学学报(自然科学版)2018年第10期

论文作者:邹新军 夏尉桓 王亚雄

文章页码:2553 - 2561

关键词:桩基础;V-T联合荷载;非均质地基;荷载传递函数;数值分析

Key words:pile foundations; V-T combined loads; non-homogeneous subsoil; load transfer functions; numerical analysis

摘    要:为研究非均质地基中单桩基础在桩顶竖向力(V)和扭矩(T)联合作用下的承载特性,假定桩侧地基土剪切模量和极限侧摩阻力沿深度呈指数函数非线性增加,并考虑桩-土接触面上位移的非协调性,根据剪切位移法和桩身荷载传递函数建立桩身位移控制方程,引入相应的力和位移边界条件,导出桩周土体处于理想弹性和塑性受力状态时的桩身内力位移解答,由此求得不同桩顶载荷工况(不同V-T组合与加载顺序)下的桩身承载力及其包络线。在此基础上,进一步采用ABAQUS对V-T联合受荷桩进行数值模拟对比分析,获得不同工况下的桩身破坏机理、影响桩身承载力的关键因素及其规律。研究结果表明:桩身承载力随桩身长径比L/D的增大而增大,但随桩土刚度比λ的增大而逐渐减小;桩顶可承受的竖向力V(扭矩T)随扭矩T(竖向力V)增加不断减小而趋于零。

Abstract: To discuss the bearing behavior of a single pile under combined loading of vertical force V and torsion T in non-homogeneous subsoil, the control equation of the pile shaft was set up by using the pile shaft load transferring function and shear displacement method, in which the exponential function model was adopted to simulate the increasing change of subsoil shear modulus and ultimate side resistance with depth, and the non-coordination deformation along the pile-soil interface was considered as well. Then, force and displacement boundary conditions were introduced to deduce the analytical solutions for the inner forces and deformation of the pile shaft under ideal elastic-plastic bearing stages of subsoil. Based on the obtained solutions, various combined values and loading sequences of V and T at the pile top were adopted to determine the bearing capacity of the pile shaft, from which failure envelops were plotted correspondingly. Further numerical analyses were carried out by ABAQUS to find out the failure mechanism and the key factors that affect the bearing capacity of V-T combined loaded piles. The results show that the bearing capacity of pile shaft increases with the increase of aspect ratio L/D, while decreases with the increase of the ratio of the constant coefficient of the subsoil shear modulus distribution function to that in the stiffness ratio (λ) of pile shaft to subsoil. Increasing the torsion (or the vertical force) at the pile top will decrease the vertical (or torsional) bearing capacity of a final zero value.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号