改进Adaboost算法的人体步态识别方法
来源期刊:控制工程2018年第7期
论文作者:罗莎 夏国恩 朱新琰
文章页码:1312 - 1317
关键词:图像分割;模糊均值聚类算法;果蝇算法;味道浓度;
摘 要:为了在人体步态识别中更加准确地进行动作分类,提出了一种基于改进Ada Boost算法的人体步态识别方法。首先利用Kinect传感器捕获姿态序列,并表示为8个选定四肢的角向量(欧拉角),进一步通过稀疏表示建模作为候选特征;然后使用支持向量机(SVM)对每一个动作特征进行训练,得到弱分类器;最后利用Adaboost算法进行训练,得到相应的动作特征集和强分类器,并对强分类器进行融合实现动作识别。通过大型数据集的测试以及与几种最新方法的比较,证明了该方案的有效性,识别精度能够达到94%左右。
罗莎1,夏国恩2,朱新琰1
1. 北海职业学院电子信息工程系2. 广西财经学院工商管理学院
摘 要:为了在人体步态识别中更加准确地进行动作分类,提出了一种基于改进Ada Boost算法的人体步态识别方法。首先利用Kinect传感器捕获姿态序列,并表示为8个选定四肢的角向量(欧拉角),进一步通过稀疏表示建模作为候选特征;然后使用支持向量机(SVM)对每一个动作特征进行训练,得到弱分类器;最后利用Adaboost算法进行训练,得到相应的动作特征集和强分类器,并对强分类器进行融合实现动作识别。通过大型数据集的测试以及与几种最新方法的比较,证明了该方案的有效性,识别精度能够达到94%左右。
关键词:图像分割;模糊均值聚类算法;果蝇算法;味道浓度;