基于经验模式分解和自适应神经模糊推理的风速短期智能预测混合方法

来源期刊:中南大学学报(自然科学版)2016年第2期

论文作者:刘辉 张雷 田红旗 梁习锋 李燕飞

文章页码:676 - 683

关键词:铁路安全;风速预测;经验模式分解;自适应模糊推理

Key words:railway security; wind speed forecast; empirical mode decomposition; adaptive neural fuzzy inference system

摘    要:为实现风速的超前多步高精度预测,提出一种基于经验模式分解与自适应神经模糊推理的混合方法。该方法利用经验模式分解法对铁路风速进行多层分解计算以降低风速的强随机性,对分解后的各层风速数据分别建立自适应神经模糊推理预测模型并完成预测计算,最终加权各层预测值获得原实测数据的对应步数的预测结果。运用所提出的方法对青藏铁路某监控点的风速进行预测。研究结果表明:所提出的混合方法有效融合了经验模式分解法的信号细分性能和自适应神经模糊推理法的非线性追踪能力,混合模型的超前1步、2步、3步预测的平均相对误差分别为6.24%,11.11%和14.30%,体现出良好的非平稳信号预测性能。

Abstract: To get high-precision forecasting results, a hybrid method was proposed by adopting the empirical mode decomposition and the adaptive neural fuzzy inference system. The procedures of the proposed method are as follows. Firstly, use the empirical mode decomposition to decompose the non-stationary wind speed series into a group of sub wind speed layers. Secondly, utilize the adaptive neural fuzzy inference system to build multi-step forecasting models for all the decomposed wind speed layers. Thirdly, sum up the multi-step forecasting results of the decomposed layers to get the final predictions for the original wind speed signals. Experiment was made using the wind speed data sampled from a monitoring wind station along the Qinghai—Tibet railway. The results show that the proposed method combinesthe decomposing performance of the empirical mode decomposition and the nonlinear performance of the adaptive neural fuzzy inference system effectively. The mean percentage errors of the one-three step ahead forecasting results are 6.24%, 11.11% and 14.30%,respectively.Those errors indicate that the proposed method has satisfactory forecasting performance.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号