Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films
来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2010年第8期
论文作者:Vipin Chawla R.Jayaganthan Ramesh Chandra
文章页码:673 - 678
摘 要:Nanocomposite Ti-Si-N thin films have been deposited on Si (100) substrate by direct current/radio frequency (DC/RF) magnetron sputtering. The effect of varying deposition parameters on the structure and mechanical properties of Ti-Si-N films has been investigated by characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and nanoindentation, respectively. XRD analysis of the thin films exhibit all (111), (200) and (220) peaks initially with varying sputtering pressure, but (111) peak dominates at higher sputtering pressure. The crystallite size calculated from XRD peaks shows that it increases with increasing sputtering pressure. Microstructural analysis reveals that the dense blurred grains transform into uniform grains in the films and shows porosity with increasing sputtering pressure. The surface roughness of the Ti-Si-N films increases with varying sputtering pressure. The hardness and Young s modulus values of Ti-Si-N films are 33.7 and 278.6 GPa, respectively, with 0.7 Pa sputtering pressure but it decreases with further increase in sputtering pressure due to an increase in porosity of the films.
Vipin Chawla1,2,R.Jayaganthan1,Ramesh Chandra2
1. Department of Metallurgical and Materials Engineering & Centre of Nanotechnology,Indian Institute of Technology Roorkee2. Nano Science Laboratory,Institute Instrumentation Centre,Indian Institute of Technology Roorkee
摘 要:Nanocomposite Ti-Si-N thin films have been deposited on Si (100) substrate by direct current/radio frequency (DC/RF) magnetron sputtering. The effect of varying deposition parameters on the structure and mechanical properties of Ti-Si-N films has been investigated by characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and nanoindentation, respectively. XRD analysis of the thin films exhibit all (111), (200) and (220) peaks initially with varying sputtering pressure, but (111) peak dominates at higher sputtering pressure. The crystallite size calculated from XRD peaks shows that it increases with increasing sputtering pressure. Microstructural analysis reveals that the dense blurred grains transform into uniform grains in the films and shows porosity with increasing sputtering pressure. The surface roughness of the Ti-Si-N films increases with varying sputtering pressure. The hardness and Young s modulus values of Ti-Si-N films are 33.7 and 278.6 GPa, respectively, with 0.7 Pa sputtering pressure but it decreases with further increase in sputtering pressure due to an increase in porosity of the films.
关键词: