简介概要

基于张量子空间的半脑对称度特征与癫痫识别

来源期刊:东北大学学报(自然科学版)2017年第7期

论文作者:姜慧研 刘若楠 高菲菲 苗宇

文章页码:923 - 1871

关键词:癫痫;张量;PET;多线性主成分分析;支持向量机;

摘    要:结合脑PET图像信息,提出了一种基于张量子空间的半脑对称度特征的识别方法用于识别PET图像中癫痫病灶.首先计算全部脑PET图像中所有体素的SUV,并基于SUV建立三阶张量;然后提取半脑对称度特征,建立半脑对称度张量模型;其次利用多线性主成分分析(MPCA)方法对半脑对称度张量模型进行特征选择;最后基于支持向量机(SVM)分类器进行癫痫识别.实验结果表明:提出的算法能够有效地识别脑PET图像中的癫痫病灶,可以作为计算机辅助诊断方式帮助医生进行癫痫疾病的诊断.

详情信息展示

基于张量子空间的半脑对称度特征与癫痫识别

姜慧研1,刘若楠2,高菲菲2,苗宇1

1. 东北大学软件学院2. 东北大学中荷生物医学与信息工程学院

摘 要:结合脑PET图像信息,提出了一种基于张量子空间的半脑对称度特征的识别方法用于识别PET图像中癫痫病灶.首先计算全部脑PET图像中所有体素的SUV,并基于SUV建立三阶张量;然后提取半脑对称度特征,建立半脑对称度张量模型;其次利用多线性主成分分析(MPCA)方法对半脑对称度张量模型进行特征选择;最后基于支持向量机(SVM)分类器进行癫痫识别.实验结果表明:提出的算法能够有效地识别脑PET图像中的癫痫病灶,可以作为计算机辅助诊断方式帮助医生进行癫痫疾病的诊断.

关键词:癫痫;张量;PET;多线性主成分分析;支持向量机;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号