Improvement of corrosion resistance of AZ91D magnesium alloy by gadolinium addition

来源期刊:中国有色金属学报(英文版)2006年第z3期

论文作者:周学华 卫中领 陈秋荣 甘复兴

文章页码:1664 - 1668

Key words:AZ91D alloy; magnesium alloy; corrosion; gadolinium; rare earth

Abstract: Based on the previous investigation on beneficial introduction of holmium into magnesium alloy, the effect of gadolinium, an adjacent rare earth element, on corrosion resistance was examined. The corrosion behavior of two Mg-9Al-Gd alloys (Mg-9Al-0.45Gd and Mg-9Al-1.43Gd) was evaluated and compared with that of Mg-9Al alloy without Gd by means of specimen mass loss and hydrogen evolution in 3.5% NaCl solution saturated with Mg(OH)2. The Gd-containing alloys exhibit enhanced corrosion resistance with respect to the plain Mg-9Al alloy. The microstructures of Mg-9Al alloy and Mg-9Al-0.45 Gd alloy were observed by electron probe microanalysis (EPMA) and energy dispersion spectroscopy (EDS). The alloys with Gd addition show a microstructure characterized by α phase solid solution, surrounded by minor amount of β phase and more grain-like Gd-containing phase. To illustrate the involved mechanism their polarization curves were recorded. The electrochemical investigations reveal that Gd addition shifts the corrosion potential of the alloy towards active, as Gd containing phase is more active and hence less cathodic. As a result, the micro-galvanic corrosion is suppressed. Moreover corrosion product films formed on the Gd containing alloys are more compact and provide a better protective effectiveness than that on the alloy without Gd against corrosion. Repassivation measurements in mixture solution of 0.21 mol/L K2CrO4+0.6 mol/L NaCl also verify the beneficial role of Gd addition. Based on the present preliminary analysis, both the deposited Gd-containing phases and corrosion product films are believed to be responsible for the improved corrosion behaviour due to Gd addition.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号