求解动态优化问题的改进多种群引力搜索算法

来源期刊:中南大学学报(自然科学版)2015年第9期

论文作者:毕晓君 刁鹏飞 王艳娇 肖婧

文章页码:3325 - 3332

关键词:引力搜索算法(GSA);动态优化问题(DOPs);多种群策略

Key words:gravitational search algorithm (GSA); dynamic optimization problems (DOPs); multi-population strategy

摘    要:针对目前多种群算法解决动态优化问题时存在过多冗余计算、寻优精度低等缺陷,提出多种群串行搜索的引力搜索算法。采用多种群串行搜索的策略,便于当前子种群利用其他已收敛种群的进化信息。为解决多峰重复搜索而带来的冗余计算问题,提出具有约束条件的初始化策略,给予初始化的粒子以方向性的指引,避免其初始化在已寻峰区域;采用距离判决的策略发现并终止多峰重复搜索。为全面的监测环境变化及解决多样性丢失问题,提出一种监测环境策略及追踪策略。研究结果表明:所提算法,面对不同的环境变化程度以及不同的峰值数量,其求解精度都优于其他7种对比算法的求解精度,证明该算法在求解动态优化问题上的优越性。

Abstract: To improve the redundant computing and low accuracy of solving dynamic optimization problems (DOPs) for multi-population algorithm, a novel improved multi-population gravitational search algorithm (IMGSA) was proposed. In IMGSA, the multi-population serial strategy was good for the present subpopulation to use evolutionary information of convergence population. A constraint initialization strategy was proposed to reduce the redundant computing which was generated by multiple populations searching repeatedly. Simultaneously, a distance decision strategy was used to stop multiple populations searching. Eventually, a monitoring and tracking strategy was used to monitor the environmental change and track the local peaks. The results show that IMGSA has a better performance in solving DOPs than those of other seven dynamic algorithms in different degree of environmental change or different peak number. It can prove the validity of proposed algorithm.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号