锻造高Nb-TiAl合金高温蠕变与损伤行为

来源期刊:中国有色金属学报优先出版第20210813期

论文作者:张顺科 田素贵 田宁 吕晓霞 焦泽辉 晋芳伟 李德元

文章页码:78 - 91

关键词:锻造态高Nb-TiAl合金,组织结构,蠕变,变形机制,损伤特征

Key words:forged high Nb-TiAl alloy, microstructure, creep, deformation mechanism, damage features

摘    要:通过组织形貌观察和蠕变曲线测定,研究了锻造高Nb-TiAl合金的蠕变与损伤行为。结果表明,铸态高Nb-TiAl合金经等温锻造,层片晶团的平均尺寸由507μm减小到56.7μm。锻造态高Nb-TiAl合金在蠕变期间的变形主要发生在γ片层和等轴γ晶中,位错运动至相界/晶界受阻,可形成位错缠结或位错列,提高位错运动的阻力;其中,等轴γ晶粒中的位错缠结可发生束集促进动态再结晶,形成细小亚晶结构。柏氏矢量为[`110]和[101]的位错分别在不同{111}面滑移形成位错网,γ相中的蠕变位错运动至位错网,与其相互作用,可改变原来的运动方向,促进其攀移。蠕变后期,孔洞首先在等轴γ晶区域产生,并在该区域聚集、长大和扩展,直至发生合金的蠕变断裂,是高温蠕变期间的变形与损伤机制。

Abstract: The deformation and damage behavior of the forged high Nb-TiAl alloy during creep are investigated by means of creep properties measurement and microstructure observation. Results show that using isothermal forging technology may diminish the average grain size of the alloy from 573μm to 43.8μm. TThe deformation of forged alloy during creep mainly occurred in γ lamellar and equiaxed γ grain. The dislocations slipping to boundaries and phases interfaces are hindered for piling up, and dislocation tangle or dislocation sequence can be formed to increase the resistance of dislocation motion. Wherein, dislocation tangles in the equiaxed γ grain can generate bundle aggregation to promote dynamic recrystallization and form fine sub-grain structure. The dislocations with Burgers vector of [`110] and [101] slip on the {111} planes to form the networks. When the creep dislocations in the lamellar γ phases slip to the networks, the ones may react with the networks to change the original moving direction to promote the climbing of dislocations, which may delay the stress concentration and improve the creep resistance of alloy. In the latter stage of creep, the holes or cracks are firstly initiated in the equiaxed γ grain to propagate in the region until creeping fracture, which is the damage and fracture mechanism of alloy during creep at high temperature.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号