简介概要

Characterization of microstructure in high strength Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing

来源期刊:JOURNAL OF RARE EARTHS2011年第9期

论文作者:陈彬 卢晨 林栋樑 曾小勤

文章页码:902 - 906

摘    要:The Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing (ECAP) was investigated. It was found that the Mg96Y3Zn1 alloy processed by extrusion and ECAP obtained ultrafine grains and exhibited excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy was refined to about 400 nm. The highest strengths with yield strength of 381.45 MPa and ultimate tensile strength of 438.33 MPa were obtained after 2 passes at 623 K. The high strength of Mg96Y3Zn1 alloy was due to the strengthening by the grain refinement, the long period stacking (LPS) structure, solid solution, fine Mg24Y5 particles, and nano-scale precipitates. It was found that the elongation was decreased with pass number increasing. It was because that the cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test.

详情信息展示

Characterization of microstructure in high strength Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing

陈彬,卢晨,林栋樑,曾小勤

School of Materials Science and Engineering, Shanghai Jiao Tong University

摘 要:The Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing (ECAP) was investigated. It was found that the Mg96Y3Zn1 alloy processed by extrusion and ECAP obtained ultrafine grains and exhibited excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy was refined to about 400 nm. The highest strengths with yield strength of 381.45 MPa and ultimate tensile strength of 438.33 MPa were obtained after 2 passes at 623 K. The high strength of Mg96Y3Zn1 alloy was due to the strengthening by the grain refinement, the long period stacking (LPS) structure, solid solution, fine Mg24Y5 particles, and nano-scale precipitates. It was found that the elongation was decreased with pass number increasing. It was because that the cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号