简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Experimental Analysis of Microscale Laser Shock Processing on Metallic Material Using Excimer Laser

Zhigang Che 1) , Liangcai Xiong 1) , Tielin Shi 1) , Huayang Cheng 1) and Likun Yang 2) 1) Wuhan National Laboratory for Optoelectronics, State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China 2) Wuhan Huagong Laser Engineering Co., Ltd, Wuhan 430223, China

摘 要:Microscale laser shock processing (μLSP), also known as laser shock processing in microscale, is a technique that uses microscale focused laser beam to induce high pressure plasma and generates plastic deformation and compressive residual stress in target materials, thus improves fatigue or stress corrosion cracking resistance of MEMS (Micro Electromechanical Systems) devices made of such a material. Many works have been reported about the research and experiment for μLSP. But the diameters of 50–200 μm were used at the first time for this field, which was useful for treating micro-device components with larger area and curved surface. The excimer laser was used firstly on μLSP for shorter wavelength than that of used in previous researches. The determination method of laser spot size at micro-level spatial resolution was presented. Under these conditions, plastic deformation, the stress analysis and microhardness with different pulse number, pulse energy and pulse spacing were investigated. Especially the residual stress distribution with depth treated by μLSP, was first investigated. Experiment results showed that the material performance was improved remarkably after μLSP.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号