简介概要

Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr–Mo–V Steel

来源期刊:Acta Metallurgica Sinica2020年第10期

论文作者:Yong-Han Li Zhong-Hua Jiang Zhen-Dan Yang Jue-Shun Zhu

文章页码:1346 - 1358

摘    要:A modified tempering treatment has been designed in order to avoid the direct transformation of retained austenite(Ar) during tempering of a low-alloy Cr–Mo–V steel. Instead of the direct transformation of Ar into ferrite and M23C6 carbides during conventional tempering at 700 °C, transformation into aggregate of ferrite and cementite has been forced by a pre-tempering at 455 °C before conventional tempering. Experiments have been performed on specimens quenched with cooling rates 1.5, 3 and 12 °C/s, providing different types of Ar within the as-quenched microstructures. The results show that the tempering modification does not improve the Charpy impact toughness at the highest quenching rate of 12 °C/s, where the specimens cannot incur cleavage cracking induced from fine and discontinuous M23C6 carbides along lath interfaces. For the lowest quenching rate 1.5 °C/s, the Charpy impact toughness can be improved, and the failure is dominated by carbide aggregates, which originate from the decomposed products of blocky Ar. This is because the tempering modification effectively suppresses the formation of coarse M23C6 carbides at interfaces between the carbide aggregate and bainitic matrix, thereby resulting in a relatively homogeneous distribution of M23C6 carbides inside carbide aggregates. Therefore, the tempering modification is recommended for large-scale forgings, in which relatively high quenching rates are difficult to achieve.

详情信息展示

Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr–Mo–V Steel

Yong-Han Li,Zhong-Hua Jiang,Zhen-Dan Yang,Jue-Shun Zhu

Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences

摘 要:A modified tempering treatment has been designed in order to avoid the direct transformation of retained austenite(Ar) during tempering of a low-alloy Cr–Mo–V steel. Instead of the direct transformation of Ar into ferrite and M23C6 carbides during conventional tempering at 700 °C, transformation into aggregate of ferrite and cementite has been forced by a pre-tempering at 455 °C before conventional tempering. Experiments have been performed on specimens quenched with cooling rates 1.5, 3 and 12 °C/s, providing different types of Ar within the as-quenched microstructures. The results show that the tempering modification does not improve the Charpy impact toughness at the highest quenching rate of 12 °C/s, where the specimens cannot incur cleavage cracking induced from fine and discontinuous M23C6 carbides along lath interfaces. For the lowest quenching rate 1.5 °C/s, the Charpy impact toughness can be improved, and the failure is dominated by carbide aggregates, which originate from the decomposed products of blocky Ar. This is because the tempering modification effectively suppresses the formation of coarse M23C6 carbides at interfaces between the carbide aggregate and bainitic matrix, thereby resulting in a relatively homogeneous distribution of M23C6 carbides inside carbide aggregates. Therefore, the tempering modification is recommended for large-scale forgings, in which relatively high quenching rates are difficult to achieve.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号