Mg(In)固溶体的微观结构与储氢性能

来源期刊:中国有色金属学报2014年第6期

论文作者:钟海长 王 辉

文章页码:1486 - 1494

关键词:Mg(In)固溶体;可逆相变;界面合金化;微观结构;储氢性能

Key words:Mg(In) solid solution; reversible phase transition; interfacial alloying; microstructure; hydrogen storage property

摘    要:采用烧结-球磨方法制备了不同成分的Mg(In)固溶体合金。利用X射线衍射分析合金的相组成和吸/脱氢过程的相转变,并用Rietveld方法精确测定Mg(In)固溶体的晶格常数;通过SEM观察样品的微观形貌及其相分布;吸/脱氢性能采用Sievert方法进行测试,并用差热分析准确测定合金的脱氢温度。结果表明:In固溶到Mg晶格中使Mg的晶格常数减小;Mg(In)固溶体氢化分解成MgH2和金属间化合物MgxIny,脱氢后可逆地回到Mg(In)固溶体。Mg(In)固溶体吸/脱氢可逆相变与界面合金化有效降低了合金的脱氢反应焓,从而降低了合金脱氢温度,并提高了合金的吸/脱氢动力学性能。与纯Mg相比,Mg(In)固溶体的吸/脱氢平台压提高,吸/脱氢滞后减小。

Abstract: Mg(In) solid solutions with different compositions were prepared by sintering and ball milling method. X-ray diffraction was used to analyze the phases and phase transition of the alloys during the hydriding and dehydriding process. Lattice constants of Mg(In) solid solution were accurately calculated by Rietveld method. Morphology and phase distribution of the samples were observed by SEM. The hydrogen absorption and desorption performances of the alloys were measured by Sievert method, and dehydriding temperatures were determined by DSC tests. The results show that the lattice constants of Mg are reduced by dissolving of In, and that Mg(In) solid solutions were hydrogenated to MgH2 and intermetallic compounds MgxIny, which reversibly return to Mg(In) solid solution after dehydrogenation. The reversible hydriding and dehydriding phase transitions of Mg(In) solid solutions and interfacial alloying effectively reduce the dehydriding enthalpy, thus lowering the dehydriding temperature and improving the hydriding and dehydriding kinetics of the Mg(In) solid solutions. The plateau pressure of Mg(In) solid solutions is improved and the hydriding and dehydriding lag is reduced compared with those of pure Mg.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号