简介概要

Isothermal γ →ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第15期

论文作者:Yufan Zhao Yuichiro Koizumi Kenta Aoyagi Kenta Yamanaka Akihiko Chiba

文章页码:162 - 170

摘    要:Powder bed fusion with electron beam(PBF-EB),allows Co-Cr-Mo(CCM) implants with patientcustomization to be fabricated with high quality and complex geometry.However,the variability in the properties of PBF-EB-built CCM alloy,mainly due to the lack of understanding of the mechanisms that govern microstructural heterogeneity,brings limitations in extensive application.In this study,the microstructural heterogeneity regarding the γ-fcc→ε-hcp phase transformation was characterized.The phase transformation during PBF-EB was analyzed depending on the thermal history that was elucidated by the numerical simulation.It revealed that isothermal γ→ε transformation occurred during the fabrication.Importantly,the difference in γ/ε phase distribution was a result of the thermal history determining which method phase transformation was taking place,which can be influenced by the PBF-EB process parameters.In the sample with a low energy input(Earea=2.6 J/mm2),the martensitic transformation was dominant.As the building height increased from the bottom,the e phase fraction decreased.On the other hand,in the sample with a higher energy input(Earea=4.4 J/mm2),the ε phase fo rmed via diffusional-massive transformation and only appea red in a short range of the lower part away from the bottom.

详情信息展示

Isothermal γ →ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing

Yufan Zhao1,Yuichiro Koizumi2,Kenta Aoyagi2,Kenta Yamanaka2,Akihiko Chiba2

1. Department of Materials Processing, Graduate School of Engineering, Tohoku University2. Institute for Materials Research, Tohoku University

摘 要:Powder bed fusion with electron beam(PBF-EB),allows Co-Cr-Mo(CCM) implants with patientcustomization to be fabricated with high quality and complex geometry.However,the variability in the properties of PBF-EB-built CCM alloy,mainly due to the lack of understanding of the mechanisms that govern microstructural heterogeneity,brings limitations in extensive application.In this study,the microstructural heterogeneity regarding the γ-fcc→ε-hcp phase transformation was characterized.The phase transformation during PBF-EB was analyzed depending on the thermal history that was elucidated by the numerical simulation.It revealed that isothermal γ→ε transformation occurred during the fabrication.Importantly,the difference in γ/ε phase distribution was a result of the thermal history determining which method phase transformation was taking place,which can be influenced by the PBF-EB process parameters.In the sample with a low energy input(Earea=2.6 J/mm2),the martensitic transformation was dominant.As the building height increased from the bottom,the e phase fraction decreased.On the other hand,in the sample with a higher energy input(Earea=4.4 J/mm2),the ε phase fo rmed via diffusional-massive transformation and only appea red in a short range of the lower part away from the bottom.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号