Microstructural evolution in a powder metallurgicalTi-7Mo alloy with continuous oxygen gradient

来源期刊:中南大学学报(英文版)2016年第3期

论文作者:刘咏 刘彬 陈智星 曾凡沛 卢金忠

文章页码:508 - 514

Key words:titanium alloys; oxygen; martensitic transformation; high-throughput method; powder metallurgy (P/M);mechanical properties

Abstract: A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy (P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of different oxygen contents via vacuum sintering and spark plasma sintering (SPS), respectively. After subsequent heat treatments, high-throughput characterizations of the microstructures and mechanical properties by localized measurements were conducted. The Ti-7% Mo (molar fraction) alloy with an oxygen content ranging from 1.3×10-3 to 6.2×10-5(mass fraction) was obtained, and the effects of oxygen on the microstructural evolution and mechanical properties were studied. The results show that SPS is an effective way for fabricating fully dense Ti alloy with a compositional gradient. The average width of α′ phase coarsens with the increase of the content of oxygen. The content of α″ martensitic phase also increases with the content of oxygen. At oxygen contents of 3×10-3 and 4×10-3(mass fraction), the Ti alloys present the lowest microhardness and the lowest elastic modulus, respectively. The results also indicate that the martensitic phases actually decrease the hardness of Ti-7Mo alloy, and oxygen effectively hardens the alloy by solid solution strengthening. Therefore, the high-throughput characterization on a microstructure with a gradient content of oxygen is an effective method for rapidly evaluating the composition–property relationship of titanium alloys.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号