Characteristics of Dynamic Load Response of a Fuel Cell with a Dead-ended Anode
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2017年第4期
论文作者:罗凡 陈奔 YANG Tianqi CAI Yonghua
文章页码:766 - 771
摘 要:The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.
罗凡1,陈奔2,YANG Tianqi2,CAI Yonghua2
1. School of Information Engineering, Wuhan University of Technology2. School of Automotive Engineering,Wuhan University of Technology
摘 要:The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.
关键词: