形状可调Bézier曲线的构造方法
来源期刊:湖南科技大学学报自然科学版2018年第2期
论文作者:严兰兰 韩旭里 黄涛
文章页码:110 - 117
关键词:曲线表示方法;Bézier曲线;形状参数;调配函数;
摘 要:针对Bézier曲线相对于控制顶点形状固定的不足,各种含参数的、性质类似于Bernstein基函数的调配函数纷纷被提出,但这些调配函数是如何推导出来的却无从知晓.本文借助经典Bernstein基函数的升阶公式,基于由可调控制顶点定义可调曲线的思想来定义形状可调Bézier曲线,详细展示了调配函数的构造过程,现有文献中的很多调配函数都可用该方法得到.按本文方法定义可调Bézier曲线,其形状参数的几何意义直观明了.本文不仅揭示了可调Bézier曲线形状可调的本质,而且给出了构造含参数的多项式调配函数的通用方法.
严兰兰1,2,韩旭里2,黄涛1
1. 东华理工大学理学院2. 中南大学数学与统计学院
摘 要:针对Bézier曲线相对于控制顶点形状固定的不足,各种含参数的、性质类似于Bernstein基函数的调配函数纷纷被提出,但这些调配函数是如何推导出来的却无从知晓.本文借助经典Bernstein基函数的升阶公式,基于由可调控制顶点定义可调曲线的思想来定义形状可调Bézier曲线,详细展示了调配函数的构造过程,现有文献中的很多调配函数都可用该方法得到.按本文方法定义可调Bézier曲线,其形状参数的几何意义直观明了.本文不仅揭示了可调Bézier曲线形状可调的本质,而且给出了构造含参数的多项式调配函数的通用方法.
关键词:曲线表示方法;Bézier曲线;形状参数;调配函数;