简介概要

形状可调Bézier曲线的构造方法

来源期刊:湖南科技大学学报自然科学版2018年第2期

论文作者:严兰兰 韩旭里 黄涛

文章页码:110 - 117

关键词:曲线表示方法;Bézier曲线;形状参数;调配函数;

摘    要:针对Bézier曲线相对于控制顶点形状固定的不足,各种含参数的、性质类似于Bernstein基函数的调配函数纷纷被提出,但这些调配函数是如何推导出来的却无从知晓.本文借助经典Bernstein基函数的升阶公式,基于由可调控制顶点定义可调曲线的思想来定义形状可调Bézier曲线,详细展示了调配函数的构造过程,现有文献中的很多调配函数都可用该方法得到.按本文方法定义可调Bézier曲线,其形状参数的几何意义直观明了.本文不仅揭示了可调Bézier曲线形状可调的本质,而且给出了构造含参数的多项式调配函数的通用方法.

详情信息展示

形状可调Bézier曲线的构造方法

严兰兰1,2,韩旭里2,黄涛1

1. 东华理工大学理学院2. 中南大学数学与统计学院

摘 要:针对Bézier曲线相对于控制顶点形状固定的不足,各种含参数的、性质类似于Bernstein基函数的调配函数纷纷被提出,但这些调配函数是如何推导出来的却无从知晓.本文借助经典Bernstein基函数的升阶公式,基于由可调控制顶点定义可调曲线的思想来定义形状可调Bézier曲线,详细展示了调配函数的构造过程,现有文献中的很多调配函数都可用该方法得到.按本文方法定义可调Bézier曲线,其形状参数的几何意义直观明了.本文不仅揭示了可调Bézier曲线形状可调的本质,而且给出了构造含参数的多项式调配函数的通用方法.

关键词:曲线表示方法;Bézier曲线;形状参数;调配函数;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号