简介概要

蜂巢栅格下机器人导航路径的动态分组蚁群规划

来源期刊:机械设计与制造2020年第8期

论文作者:李海 杨小柳 徐凌桦

文章页码:279 - 570

关键词:移动机器人;导航路径规划;改进蜂巢栅格;动态分组蚁群算法;信息素自适应扩散;

摘    要:为了减少机器人导航路径的长度和算法运行时间,同时提高算法规划稳定性,提出了蜂巢栅格环境下的动态分组蚁群算法规划方法。分析了方形栅格四叉树和八叉树工作模式的弊端,提出了改进蜂巢栅格的环境建模方法,蜂巢栅格避障时的有效路径比、安全性、转弯角大小、对圆形障碍物覆盖的有效面积比等多个角度均优于传统栅格。参考猫群算法的分群思想将蚁群分为跟踪蚁和搜索蚁,提出了动态分组蚁群策略和信息素的自适应扩散策略,从而给出了动态分组蚁群算法的执行步骤。经过算法的多样性和规划性能仿真分析,动态分组蚁群算法的路径多样性在迭代过程中保持较高水平,在相同环境下动态分组蚁群算法规划的最优路径长度比ACS蚁群算法减少了9.99%,搜索到最优路径时的迭代次数远远小于ACS蚁群算法,且从最优路径长度和迭代次数标准差看,动态分组蚁群算法稳定性好于ACS蚁群算法。

详情信息展示

蜂巢栅格下机器人导航路径的动态分组蚁群规划

李海1,杨小柳2,徐凌桦2

1. 中山职业技术学院机电工程学院2. 贵州大学电气工程学院

摘 要:为了减少机器人导航路径的长度和算法运行时间,同时提高算法规划稳定性,提出了蜂巢栅格环境下的动态分组蚁群算法规划方法。分析了方形栅格四叉树和八叉树工作模式的弊端,提出了改进蜂巢栅格的环境建模方法,蜂巢栅格避障时的有效路径比、安全性、转弯角大小、对圆形障碍物覆盖的有效面积比等多个角度均优于传统栅格。参考猫群算法的分群思想将蚁群分为跟踪蚁和搜索蚁,提出了动态分组蚁群策略和信息素的自适应扩散策略,从而给出了动态分组蚁群算法的执行步骤。经过算法的多样性和规划性能仿真分析,动态分组蚁群算法的路径多样性在迭代过程中保持较高水平,在相同环境下动态分组蚁群算法规划的最优路径长度比ACS蚁群算法减少了9.99%,搜索到最优路径时的迭代次数远远小于ACS蚁群算法,且从最优路径长度和迭代次数标准差看,动态分组蚁群算法稳定性好于ACS蚁群算法。

关键词:移动机器人;导航路径规划;改进蜂巢栅格;动态分组蚁群算法;信息素自适应扩散;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号