简介概要

Experimental Investigation on Viscosity of Cu-H2O Nanofluids

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2009年第1期

论文作者:李新芳

文章页码:48 - 52

摘    要:A procedure for preparing a nanofluid that a solid-liquid composite material consists of solid nanoparticles with sizes typically of 1-100 nm suspended in liquid was proposed. By means of the procedure, Cu-H2O nanofluids with and without dispersant were prepared, whose sediment pho-tographs and particle size distribution were given to illustrate the stability and evenness of suspension with dispersant. The viscosity of Cu-H2O nanofluid was measured using capillary viscometers. The mass fractions(w) of copper nanoparticles in the experiment varied between 0.04% and 0.16% with the temperature range of 30-70 ℃. The experimental results show that the temperature and SDBS concentration are the major factors affecting the viscosity of the nano-copper suspensions, while the effect of the mass fraction of Cu on the viscosity is not as obvious as that of the temperature and SDBS dispersant for the mass fraction chosen in the experiment. The apparent viscosity of the copper nano-suspensions decreases with the temperature increase, and increases slightly with the increase of the mass fraction of SDBS dispersant, and almost keeps invariability with increasing the mass fraction of Cu. The influence of SDBS concentration on the viscosity of nano-suspension was relatively large comparing with that of the nanoparticle concentration.

详情信息展示

Experimental Investigation on Viscosity of Cu-H2O Nanofluids

李新芳

摘 要:A procedure for preparing a nanofluid that a solid-liquid composite material consists of solid nanoparticles with sizes typically of 1-100 nm suspended in liquid was proposed. By means of the procedure, Cu-H2O nanofluids with and without dispersant were prepared, whose sediment pho-tographs and particle size distribution were given to illustrate the stability and evenness of suspension with dispersant. The viscosity of Cu-H2O nanofluid was measured using capillary viscometers. The mass fractions(w) of copper nanoparticles in the experiment varied between 0.04% and 0.16% with the temperature range of 30-70 ℃. The experimental results show that the temperature and SDBS concentration are the major factors affecting the viscosity of the nano-copper suspensions, while the effect of the mass fraction of Cu on the viscosity is not as obvious as that of the temperature and SDBS dispersant for the mass fraction chosen in the experiment. The apparent viscosity of the copper nano-suspensions decreases with the temperature increase, and increases slightly with the increase of the mass fraction of SDBS dispersant, and almost keeps invariability with increasing the mass fraction of Cu. The influence of SDBS concentration on the viscosity of nano-suspension was relatively large comparing with that of the nanoparticle concentration.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号