简介概要

基于改进网格搜索法的SVM参数优化

来源期刊:江西理工大学学报2019年第1期

论文作者:刘小生 章治邦

文章页码:5 - 9

关键词:支持向量机;参数优化;网格搜索法;

摘    要:支持向量机的学习和泛化能力很大程度上取决于其相关参数的选取.针对传统网格算法的不足,引入全局粒子群算法,利用其能够快速到达最优解附近的优势:先使用粒子群算法进行粗搜;再使用网格搜索法进行小步长的精细搜索得到最优解.实验结果表明:基于改进的网格搜索法SVM对比传统网格搜索法SVM,在预测精度和运算时间上都具有优势.

详情信息展示

基于改进网格搜索法的SVM参数优化

刘小生,章治邦

江西理工大学建筑与测绘工程学院

摘 要:支持向量机的学习和泛化能力很大程度上取决于其相关参数的选取.针对传统网格算法的不足,引入全局粒子群算法,利用其能够快速到达最优解附近的优势:先使用粒子群算法进行粗搜;再使用网格搜索法进行小步长的精细搜索得到最优解.实验结果表明:基于改进的网格搜索法SVM对比传统网格搜索法SVM,在预测精度和运算时间上都具有优势.

关键词:支持向量机;参数优化;网格搜索法;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号