简介概要

Preparation and characterization of Ce1-xFexO2 complex oxides and its catalytic activity for methane selective oxidation

来源期刊:JOURNAL OF RARE EARTHS2008年第2期

论文作者:LIU Mingchun LI Kongzhai WEI Yonggang WANG Hua

Key words:Ce1-xFexO2 complex oxides; H2-TPR; lattice oxygen; methane selective oxidation; rare earths;

Abstract: A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.4O2 exhibited the best activity, which converted 94.52% of CH4 at 900 °C.

详情信息展示

Preparation and characterization of Ce1-xFexO2 complex oxides and its catalytic activity for methane selective oxidation

LIU Mingchun1,LI Kongzhai1,WEI Yonggang1,WANG Hua1

(1.Faculty of Materials and Metallurgy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract:A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.4O2 exhibited the best activity, which converted 94.52% of CH4 at 900 °C.

Key words:Ce1-xFexO2 complex oxides; H2-TPR; lattice oxygen; methane selective oxidation; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号