简介概要

Influence of Sintering Temperature on the Structure and High-temperature Discharge Performance of Li Ni1/3Mn1/3Co1/3O2 Cathode Materials

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第5期

论文作者:王振杰 DU Junlin LI Zhilin 吴铸

文章页码:894 - 899

摘    要:Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.

详情信息展示

Influence of Sintering Temperature on the Structure and High-temperature Discharge Performance of Li Ni1/3Mn1/3Co1/3O2 Cathode Materials

王振杰1,2,DU Junlin1,2,LI Zhilin1,吴铸1

1. Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences2. University of Chinese Academy of Sciences

摘 要:Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号