简介概要

基于EMD-PSO-BP网络模型的大坝变形预测

来源期刊:桂林理工大学学报2017年第4期

论文作者:秦旭元 刘立龙 陈军 陈发德 黄良珂 谢劭峰

文章页码:641 - 646

关键词:变形预测;EMD;PSO;BP神经网络;

摘    要:针对大坝变形具有非平稳性、非线性等特点,将经验模态分解(EMD)和粒子群算法(PSO)引入到BP神经网络中,建立EMD-PSO-BP模型。该模型采用EMD将复杂的大坝变形数据分解成有限个相对平稳的分量,并利用粒子群算法优化BP神经网络对各分量分别建模预测,叠加重构各分量预测值作为最终预测结果。实验结果表明,EMD-PSO-BP模型具有较好的非线性映射能力、学习能力和自适应能力,能有效地提高变形预测精度,其预测精度明显优于BP神经网络模型,较PSO-BP模型也有所提高。

详情信息展示

基于EMD-PSO-BP网络模型的大坝变形预测

秦旭元,刘立龙,陈军,陈发德,黄良珂,谢劭峰

摘 要:针对大坝变形具有非平稳性、非线性等特点,将经验模态分解(EMD)和粒子群算法(PSO)引入到BP神经网络中,建立EMD-PSO-BP模型。该模型采用EMD将复杂的大坝变形数据分解成有限个相对平稳的分量,并利用粒子群算法优化BP神经网络对各分量分别建模预测,叠加重构各分量预测值作为最终预测结果。实验结果表明,EMD-PSO-BP模型具有较好的非线性映射能力、学习能力和自适应能力,能有效地提高变形预测精度,其预测精度明显优于BP神经网络模型,较PSO-BP模型也有所提高。

关键词:变形预测;EMD;PSO;BP神经网络;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号