单轴拉应力下铝空位形成能和自扩散激活能的计算

来源期刊:中南大学学报(自然科学版)2013年第6期

论文作者:臧冰 易丹青 刘欢 江勇 王斌

文章页码:2214 - 2222

关键词:应力;Al;自扩散激活能;原子迁移动力学;第一原理过渡态搜索

Key words:stress; Al; self-diffusion activation energy; atomic migration dynamics theory; first principle transition state search method

摘    要:运用第一原理平面波赝势和NEB(Nudged Elastic Band)过渡态搜索的方法计算应力作用下铝的自扩散激活能,并结合Flynn的原子迁移动力学理论,研究应力下铝自扩散的各向异性。研究结果表明:[100]方向的应力增大铝的空位形成能,在6%的应变下铝的空位形成能增大了18%。应力对铝自扩散激活能的影响在不同方向具有不同特征:随着应力的增大,铝的自扩散激活能在[011]方向上减小,在[101]方向上增大。应力对铝自扩散各向异性的影响在不同计算方法下有相同的趋势,但影响程度不同。在相同应力下,[011]和[101] 2个方向自扩散激活能的差异在Flynn模型的计算结果中最大,考虑原子弛豫的Flynn模型的计算结果次之,第一性原理过渡态搜索的计算结果最小。

Abstract: The self-diffusion activation energy of aluminum under stress was calculated by using the first principle pseudopotential plane wave method and NEB transition state search method. Combined with atomic migration dynamics theory, the anisotropy of the self-diffusion of aluminum under stress was also investigated. The results show that the vacancy formation energy of aluminum increases when the stress is applied, and it increases by 18% under the strain of 6%. The influences of the stress on the self-diffusion activation energy of aluminum are different under different diffusion directions. With the increase of the stress, the self-diffusion activation energy of aluminum decreases in [011] direction, and increases in [101] direction. The influences of the stress on the anisotropy of the self-diffusion calculated with different methods are the same, but the degrees of influence are different. Under the same stress, the ratio of activation energies in [011] and [101] direction is the largest when calculated with Flynn’s atomic migration dynamics theory method smaller with Flynn’s method with atomic relaxation and the smallest with first principle transition state search method.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号