简介概要

煤体瓦斯渗透率的PSO-LSSVM预测模型

来源期刊:煤田地质与勘探2015年第4期

论文作者:邵良杉 马寒

文章页码:23 - 26

关键词:渗透率;瓦斯;粒子群优化算法;最小二乘支持向量机;

摘    要:结合有关煤体渗透率的众多研究成果,总结出影响煤体渗透率的3个主要因素为有效应力、温度和瓦斯压力。采用粒子群优化算法(PSO)对最小二乘支持向量机(LSSVM)的参数进行优化选择,并以上述3个因素和抗压强度为输入值,以渗透率为目标输出值,建立煤体瓦斯渗透率的PSO-LSSVM预测模型。利用25组数据进行PSO-LSSVM模型与BP神经网络及支持向量机的比较实验,PSO-LSSVM预测结果与实际值拟合程度优于其他两个模型,且具有更小的误差。实验结果表明,采用PSO-LSSVM模型可由有效应力、温度和瓦斯压力对渗透率进行较高精度的预测。

详情信息展示

煤体瓦斯渗透率的PSO-LSSVM预测模型

邵良杉,马寒

辽宁工程技术大学系统工程研究所

摘 要:结合有关煤体渗透率的众多研究成果,总结出影响煤体渗透率的3个主要因素为有效应力、温度和瓦斯压力。采用粒子群优化算法(PSO)对最小二乘支持向量机(LSSVM)的参数进行优化选择,并以上述3个因素和抗压强度为输入值,以渗透率为目标输出值,建立煤体瓦斯渗透率的PSO-LSSVM预测模型。利用25组数据进行PSO-LSSVM模型与BP神经网络及支持向量机的比较实验,PSO-LSSVM预测结果与实际值拟合程度优于其他两个模型,且具有更小的误差。实验结果表明,采用PSO-LSSVM模型可由有效应力、温度和瓦斯压力对渗透率进行较高精度的预测。

关键词:渗透率;瓦斯;粒子群优化算法;最小二乘支持向量机;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号