简介概要

基于优化肌电特征的无声语音信号识别

来源期刊:东北大学学报(自然科学版)2006年第10期

论文作者:王旭 贾雪琴 李景宏 杨丹

文章页码:1095 - 1097

关键词:无声语音识别;Fisher准则;肌电特征;遗传算法;BP神经网络;

摘    要:提出了一种基于遗传算法(GA)和fisher投影的最佳可鉴别基的求解方法.将原始特征向量向着最佳可鉴别基投影可得到具有最佳可分性的新的特征向量.从颧肌和二腹肌前腹的皮肤表面检测无声发出6个汉语元音的表面肌电信号(SEMG),以该肌电信号的AR模型系数、倒谱系数和美尔倒谱系数作为原始特征向量.使用遗传算法找出了原始特征的次优组合,并组成新的特征向量.将GA找出的次优特征向量向着fisher最佳可鉴别基投影可得到最佳鉴别特征向量.最后用改进的BP神经网络作为分类器得到了较好的识别效果.

详情信息展示

基于优化肌电特征的无声语音信号识别

王旭,贾雪琴,李景宏,杨丹

摘 要:提出了一种基于遗传算法(GA)和fisher投影的最佳可鉴别基的求解方法.将原始特征向量向着最佳可鉴别基投影可得到具有最佳可分性的新的特征向量.从颧肌和二腹肌前腹的皮肤表面检测无声发出6个汉语元音的表面肌电信号(SEMG),以该肌电信号的AR模型系数、倒谱系数和美尔倒谱系数作为原始特征向量.使用遗传算法找出了原始特征的次优组合,并组成新的特征向量.将GA找出的次优特征向量向着fisher最佳可鉴别基投影可得到最佳鉴别特征向量.最后用改进的BP神经网络作为分类器得到了较好的识别效果.

关键词:无声语音识别;Fisher准则;肌电特征;遗传算法;BP神经网络;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号