简介概要

Separation of indium(Ⅲ), gallium(Ⅲ), and zinc(Ⅱ) with Levextrel resin containing di(2-ethylhexyl) phosphoric acid (CL-P204): Part Ⅱ. Mechanism and kinetics of adsorbing indium(Ⅲ)

来源期刊:Rare Metals2004年第1期

论文作者:LIU Junshen, ZHOUBaoxue, CAI Chunguang, CAIJun, and CAI Weimin) School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai , China) School of Chemistry and materials Science, Yantai Normal University, Yantai , China) Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin , China,?)

文章页码:1 - 5

摘    要:<正> The mechanism of adsorbing indium(Ⅲ) from sulfate solutions with CL-P204 Levextrel resin containing di(-2-ethylhexyl) phosphoric acid was examined by batch operation and infrared spectra. The results showed that the P204 adsorbed on the resin behaved in the similar way to solvent extraction except that it was as a monomer in resin adsorbing but in dimeric form in solvent extraction. Three factors including temperature, indium(Ⅲ) concentration of solution, and the size of resin particles which influence the In3+/H+ exchange on CL-P204 Levextrel resin were investigated by the modified limited batch technique in order to determine the kinetics of In3+/H+ exchange. It was found that the rate of ion exchange increased with the temperature and the concentration of solution increasing and with the size of the resin particles decreasing. According to the expression developed by Boyd et al, the controlling factor of In3+/H+ exchange on CL-P204 Levextrel resin was the diffusion through the resin particles. The

详情信息展示

Separation of indium(Ⅲ), gallium(Ⅲ), and zinc(Ⅱ) with Levextrel resin containing di(2-ethylhexyl) phosphoric acid (CL-P204): Part Ⅱ. Mechanism and kinetics of adsorbing indium(Ⅲ)

摘要:<正> The mechanism of adsorbing indium(Ⅲ) from sulfate solutions with CL-P204 Levextrel resin containing di(-2-ethylhexyl) phosphoric acid was examined by batch operation and infrared spectra. The results showed that the P204 adsorbed on the resin behaved in the similar way to solvent extraction except that it was as a monomer in resin adsorbing but in dimeric form in solvent extraction. Three factors including temperature, indium(Ⅲ) concentration of solution, and the size of resin particles which influence the In3+/H+ exchange on CL-P204 Levextrel resin were investigated by the modified limited batch technique in order to determine the kinetics of In3+/H+ exchange. It was found that the rate of ion exchange increased with the temperature and the concentration of solution increasing and with the size of the resin particles decreasing. According to the expression developed by Boyd et al, the controlling factor of In3+/H+ exchange on CL-P204 Levextrel resin was the diffusion through the resin particles. The

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号