简介概要

基于SVD-SGWT和IMF能量熵增量的液压故障特征提取

来源期刊:机械设计与制造2015年第3期

论文作者:柴凯 张梅军 黄杰 赵晶

文章页码:51 - 54

关键词:奇异值分解;第二代小波变换;总体平均经验模态分解;固有模态函数;能量熵增量;故障特征提取;

摘    要:针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变换,利用SVD对SGWT得到的高频系数进行降噪处理,克服了软、硬阈值法降噪的缺陷。然后对消噪处理的信号进行EEMD分解,通过IMF能量熵增量去除虚假分量;最后对主IMF分量进行Hilbert谱分析来提取信号的主要特征。仿真和实验结果表明,SVD和SGWT联合降噪故障信号信噪比显著提高,且失真度小,抑制了噪声对EEMD分解精度的干扰,能量熵增量能有效地去除虚假IMF,Hilbert谱中各频率成分清晰不混叠,成功提取了液压系统故障特征频率。

详情信息展示

基于SVD-SGWT和IMF能量熵增量的液压故障特征提取

柴凯,张梅军,黄杰,赵晶

解放军理工大学野战工程学院

摘 要:针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变换,利用SVD对SGWT得到的高频系数进行降噪处理,克服了软、硬阈值法降噪的缺陷。然后对消噪处理的信号进行EEMD分解,通过IMF能量熵增量去除虚假分量;最后对主IMF分量进行Hilbert谱分析来提取信号的主要特征。仿真和实验结果表明,SVD和SGWT联合降噪故障信号信噪比显著提高,且失真度小,抑制了噪声对EEMD分解精度的干扰,能量熵增量能有效地去除虚假IMF,Hilbert谱中各频率成分清晰不混叠,成功提取了液压系统故障特征频率。

关键词:奇异值分解;第二代小波变换;总体平均经验模态分解;固有模态函数;能量熵增量;故障特征提取;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号