简介概要

基于多特征融合的电子布缺陷分类

来源期刊:控制工程2020年第1期

论文作者:郑敏 景军锋 张缓缓 苏泽斌

文章页码:98 - 103

关键词:Hu不变矩;SIFT特征;词袋模型(BoW);支持向量机(SVM);

摘    要:针对传统的电子布缺陷分类方法效率低,稳定性差的问题,提出了基于多特征融合的电子布缺陷分类算法。首先,使用中值滤波对电子布图像进行预处理,滤除细节噪声,减少背景纹理的影响;其次,对预处理后的图像进行Canny边缘检测,利用Hu不变矩提取缺陷的几何特征;再利用尺度不变特征变换(SIFT)提取图像的纹理特征,使用K-means聚类后,构建电子布图像的词袋模型(BoW);最后,将几何特征和纹理特征融合,并传入SVM中进行训练,得到相应的电子布缺陷分类模型。实验结果表明,应用多特征融合的方法对电子布缺陷进行分类,其平均准确率可达97.22%,能够满足企业的实际需求。

详情信息展示

基于多特征融合的电子布缺陷分类

郑敏,景军锋,张缓缓,苏泽斌

西安工程大学电子信息学院

摘 要:针对传统的电子布缺陷分类方法效率低,稳定性差的问题,提出了基于多特征融合的电子布缺陷分类算法。首先,使用中值滤波对电子布图像进行预处理,滤除细节噪声,减少背景纹理的影响;其次,对预处理后的图像进行Canny边缘检测,利用Hu不变矩提取缺陷的几何特征;再利用尺度不变特征变换(SIFT)提取图像的纹理特征,使用K-means聚类后,构建电子布图像的词袋模型(BoW);最后,将几何特征和纹理特征融合,并传入SVM中进行训练,得到相应的电子布缺陷分类模型。实验结果表明,应用多特征融合的方法对电子布缺陷进行分类,其平均准确率可达97.22%,能够满足企业的实际需求。

关键词:Hu不变矩;SIFT特征;词袋模型(BoW);支持向量机(SVM);

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号