Tm3+-doped tellurite glass with Yb3+ energy sensitized for broadband amplifier at 1400–1700 nm bands
来源期刊:Journal of Rare Earths2008年第6期
论文作者:王训四 聂秋华 徐铁峰 沈祥 戴世勋 盖娜
文章页码:907 - 911
摘 要:<正>A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were per-fectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion proc-esses between Tm3+ and Yb3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and inten-sity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping proc-ess. The potential advantages of Tm3+/Yb3+ co-doped tellurite glass as amplifier material were concluded.
王训四,聂秋华,徐铁峰,沈祥,戴世勋,盖娜
摘 要:<正>A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were per-fectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion proc-esses between Tm3+ and Yb3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and inten-sity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping proc-ess. The potential advantages of Tm3+/Yb3+ co-doped tellurite glass as amplifier material were concluded.
关键词: