简介概要

Reaction behavior of trace oxygen during combustion of falling FeSi75 powder in a nitrogen flow

来源期刊:International Journal of Minerals Metallurgy and Materials2016年第8期

论文作者:Bin Li Jun-hong Chen Peng Jiang Ming-wei Yan Jia-lin Sun Yong Li

文章页码:959 - 965

摘    要:To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si3N4 sample was heat-treated to remove SiO2. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO2 was investigated. The results show that SiO2 in the Fe-Si3N4 is mainly located on the surface or around the Si3N4 particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N2 stream, trace oxygen in the N2 stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si3N4 particles to form SiO2. At the reaction zone, the oxidation of Si3N4 particles decreased the oxygen partial pressure in the N2 stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO2; by virtue of the SiO2 film developed on the surface, the Si3N4 particles adhered to each other and formed dense areas in the material.

详情信息展示

Reaction behavior of trace oxygen during combustion of falling FeSi75 powder in a nitrogen flow

Bin Li,Jun-hong Chen,Peng Jiang,Ming-wei Yan,Jia-lin Sun,Yong Li

School of Materials Science and Engineering, University of Science and Technology Beijing

摘 要:To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si3N4 sample was heat-treated to remove SiO2. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO2 was investigated. The results show that SiO2 in the Fe-Si3N4 is mainly located on the surface or around the Si3N4 particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N2 stream, trace oxygen in the N2 stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si3N4 particles to form SiO2. At the reaction zone, the oxidation of Si3N4 particles decreased the oxygen partial pressure in the N2 stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO2; by virtue of the SiO2 film developed on the surface, the Si3N4 particles adhered to each other and formed dense areas in the material.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号