简介概要

Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

来源期刊:Rare Metals2009年第6期

论文作者:CHEN Wenxue, XUE Songbai, WANG Hui, WANG Jianxin, and HAN Zongjie College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing , China

文章页码:656 - 660

摘    要:The eutectic Sn-9Zn alloy was doped with Ag (0 wt.%-1 wt.%) to form Sn-9Zn-xAg lead-free solder alloys. The effect of the addition of Ag on the microstructure and solderability of this alloy was investigated and intermetallic compounds (IMCs) formed at the solder/Cu interface were also examined in this study. The results show that, due to the addition of Ag, the microstructure of the solder changes. When the quantity of Ag is lower than 0.3 wt.%, the needle-like Zn-rich phase decreases gradually. However, when the quantity of Ag is 0.5 wt.%-1 wt.%, Ag-Zn intermetallic compounds appear in the solder. In particular, adding 0.3 wt.% Ag improves the wetting behavior due to the better oxidation resistance of the Sn-9Zn solder. The addition of an excessive amount of Ag will deteriorate the wetting property because the glutinosity and fluidity of Sn-9Zn-(0.5, 1)Ag solder decrease. The results also indicate that the addition of Ag to the Sn-Zn solder leads to the precipitation of ε-AgZn3 from the liquid solder on preformed interfacial intermetallics (Cu5Zn8). The peripheral AgZn3, nodular on the Cu5Zn8 IMCs layer, is likely to be generated by a peritectic reaction L + γ-Ag5Zn8 →ε-AgZn3 and the following crystallization of AgZn3.

详情信息展示

Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

CHEN Wenxue, XUE Songbai, WANG Hui, WANG Jianxin, and HAN Zongjie College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

摘 要:The eutectic Sn-9Zn alloy was doped with Ag (0 wt.%-1 wt.%) to form Sn-9Zn-xAg lead-free solder alloys. The effect of the addition of Ag on the microstructure and solderability of this alloy was investigated and intermetallic compounds (IMCs) formed at the solder/Cu interface were also examined in this study. The results show that, due to the addition of Ag, the microstructure of the solder changes. When the quantity of Ag is lower than 0.3 wt.%, the needle-like Zn-rich phase decreases gradually. However, when the quantity of Ag is 0.5 wt.%-1 wt.%, Ag-Zn intermetallic compounds appear in the solder. In particular, adding 0.3 wt.% Ag improves the wetting behavior due to the better oxidation resistance of the Sn-9Zn solder. The addition of an excessive amount of Ag will deteriorate the wetting property because the glutinosity and fluidity of Sn-9Zn-(0.5, 1)Ag solder decrease. The results also indicate that the addition of Ag to the Sn-Zn solder leads to the precipitation of ε-AgZn3 from the liquid solder on preformed interfacial intermetallics (Cu5Zn8). The peripheral AgZn3, nodular on the Cu5Zn8 IMCs layer, is likely to be generated by a peritectic reaction L + γ-Ag5Zn8 →ε-AgZn3 and the following crystallization of AgZn3.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号