A model for simulation of recrystallization microstructure in single-crystal superalloy

来源期刊:Rare Metals2018年第12期

论文作者:Run-Nan Wang Qing-Yan Xu Bai-Cheng Liu

文章页码:1027 - 1034

摘    要:In the present investigation, a coupled crystal plasticity finite-element(CPFE) and cellular automaton(CA) model was developed to predict the microstructure of recrystallization in single-crystal(SX) Ni-based superalloy.The quasi-static compressive tests of [001] orientated SX DD6 superalloy were conducted on Gleeble3500 tester to calibrate the CPFE model based on crystal slip kinematics.The simulated stress-strain curve agrees well with the experimental results. Quantitative deformation amount was introduced in the deformed samples of simulation and experiment, and these samples were subsequently subjected to the standard solution heat treatment(SSHT).Results of CA simulation show that the recrystallization(RX) nucleation tends to occur at the third stage of SSHT process due to the high critical temperature of RX nucleation for the samples deformed at room temperature. The inhomogeneous RX grains gradually coarsen and compete to reach more stable status by reducing the system energy.Simulated RX grain density decreases from 7.500 to1.875 mm-1,agreeing well with the value of 1.920 mm-1from electron backscattered diffraction(EBSD) detection of the experimental sample.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号