Corrosion action and passivation mechanism of magnesium alloy influoride solution
来源期刊:中国有色金属学报(英文版)2009年第1期
论文作者:李建中 黄久贵 田彦文 刘常升
文章页码:50 - 54
Key words:magnesium alloy; passive film; corrosion; fluoride; nickel sulfate
Abstract: Corrosion action and passive mechanism of magnesium alloy in the fluoride solution were studied by means of scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and electrochemistry methods. The results show that an insoluble MgF2 film is generated on the surface of magnesium alloy activated in the hydrofluoric acid. And the mass of the deposited MgF2 film may reach a constant value, when the mass ratio of Mg/F on the magnesium alloy surface is fixed at 11.3:1. The activated magnesium alloy gains a ‘passivation state’ in a mixture of sulfuric acid and hydrofluoric acid at a volume ratio of less than 1.2. At the same time the mass of magnesium alloy is maintained as a function of the time. When the ratio is above 1.4, the mass of magnesium alloy rapidly decreases. The passive film formed through adsorption of HF2- (or H2F3-, H3F4-) ions by the deposited MgF2 film can protect the magnesium alloy from corrosion in fluoride solution, but not in non-fluoride solutions. The passive state is maintained for activated magnesium alloy in an acidic sulfuric nickel solution with added fluoride. If fluoride and carbonate are added to the acidic sulfuric nickel solution, a replacement reaction between magnesium alloy and solution takes place.