简介概要

高温预析出对Al-Zn-Mg铝合金组织、力学性能和应力腐蚀性能的影响

来源期刊:中国有色金属学报2005年第5期

论文作者:黄兰萍 陈康华 李松 刘红卫

文章页码:727 - 733

关键词:Al-Zn-Mg合金; 近固溶度预析出; 组织; 力学性能; 应力腐蚀性能

Key words:Al-Zn-Mg aluminum alloy; near-solvus pre-precipitation; microstructure; mechanical property; stress corrosion cracking

摘    要:研究了近固溶度高温预析出工艺对抗应力腐蚀性能较差的中强可焊7A52和仿7039合金的组织、 时效硬化和应力腐蚀性能的影响。 显微组织观察、 力学性能分析及应力腐蚀性能测试结果表明: 近固溶度高温预析出处理可使合金在晶界形成不连续的析出相; 在保持合金强度、 塑性的同时, 预析出可提高抗应力腐蚀性能, 但预析出温度过低, 合金强度呈下降趋势; 固溶后于400 ℃预析出处理在峰值时效状态下可使7A52铝合金强度和抗应力腐蚀性能得到最佳组合, 抗应力腐蚀性能达到三级时效后的效果。

Abstract: The effects of near-solvus high-temperature pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7A52 and quasi 7039 aluminum alloys were investigated. After analyzed by optical and transmission electron microscope, it is shown that the near-solvus pre-precipitation can be limited to grain boundary and can enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance can be improved with non-deteriorated strength and plasticity via the high-temperature pre-precipitation. The optimum combination of strength and stress corrosion cracking resistance in peak-aging temper can be obtained for 7A52 alloy after pre-precipitation treatment at 400 ℃. The stress corrosion cracking resistance at peak-aging temper can match the same effect with retrogression and re-aging Treatments by the high-temperature pre-precipitation.

基金信息:国家自然科学基金资助项目



详情信息展示

[2]liao C M. Al-3.7%Zn-2.5%Mg(重量比)合金在3.5%NaCl溶液中焊接前后的SCC性能[J]. 铝加工技术, 1994(4): 43-50.

liao C M. SCC property of Al-3.7%Zn-2.5%Mg(weight percentages)before and after welding in 3.5wt% NaCl solution[J]. Aluminum Fabrication Technology, 1994(4): 43-50.

[3]林肇琦, 孙贵经, 陈长治. 中强Al-Zn-Mg 合金焊接接头应力腐蚀断裂特点的观察[J]. 东北工学院学报, 1980(3): 22-28.

LIN Zhao-qi, SUN Gui-jing, CHEN Chang-zhi. Fractographic observations of stress corrosion fracture characteristics on welded joints in medium strength Al-Zn-Mg alloys[J]. Journal of Northeast Institute of Technology, 1980(3): 22-28.

[4]Liu J, Kulak M. A new paradigm in the design of aluminum alloys for aerospace applications[J]. Materials Science Forum, 2000, 331-337: 127-140.

[5]Speidel M O. The Theory of Stress Corrosin Cracking in Alloys[M]. Brussels: NATO Scientific Affairs Division, 1974. 289-354.

[6]CHEN Kang-hua, HUANG Lan-ping. Strengthening-toughening of 7××× series high strength aluminum alloys by heat treatment[J]. Trans Nonferrous Met Soc China, 2003, 13(3): 484-494.

[7]YIN Zhi-min, JIANG Feng, PAN Qing-lin, et al. Microstructures and mechanical properties of Al-Mg and Al-Zn-Mg based alloys containing minor scandium and zirconium[J]. Trans Nonferrous Met Soc China, 2003, 13(3): 515-520.

[8]Murakami Y. Recent investigations on precipitation phenomena of aluminium alloys[J], Light Metals Technology, 1988, 29(1): 3-17.

[9]Najjar D, Magnin T, Warner T J, Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminum alloy[J]. Mater Sci Eng A, 1997, A238(2): 293- 302.

[10]刘继华, 李荻, 郭宝兰. 7×××系列铝合金应力腐蚀开裂的研究[J]. 腐蚀科学与防护技术, 2001, 13(4): 218-222.

LIU Ji-hua, LI Di, GUO Bao-lan. Investigation of stress corrosion cracking of 7××× series aluminum alloys[J]. Corrosion Science and Protection Technology, 2001, 13(4): 218-222.

[11]谷亦杰, 李永霞, 张永刚, 等. 7050合金RRA沉淀析出的TEM研究[J]. 航空材料学报, 2000, 20(4): 1-7.

GU Yi-jie, LI Yong-xia, ZHANG Yong-gang, et al. TEM observation of precipitates in a 7050 alloy after RRA treatment [J]. Journal of Aeronautical Materials, 2000, 20(4): 1-7.

[12]Lendvai J. Precipitation and strengthening in aluminium alloys[J]. Materials Science Forum, 1996, 217-222: 43-56.

[13]Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies[J]. Materials Characterization, 2000, 44: 101-131.

[14]Brown M H. Three-steep Aging to Obtain High Strength and Corrosion Resistance in Al-Zn-Mg-Cu Alloys[P]. US 4477292, 1984.

[15]Brown M H. Aluminum Alloy Product Having Improved Combinations of Strength and Corrosion Properties and Method for Producing the Same[P]. US 4863528, 1989.

[16]Liu J. Heat Treatment of Precipitation Hardening Alloys[P]. US 5108520, 1992.

[17]Ohnishi T, Ibaraki Y, Ito T. Improvement of fracture toughness in 7475 aluminum alloy by the RRA(retrogression and re-ageing) process[J]. Materials Transactions, JIM, 1989, 30(8): 601-607.

[18]林肇琦. 高强铝合金的显微组织与应力腐蚀开裂问题(2)[J]. 轻金属, 1980, 6: 16-23.

LIN Zhao-qi. The relation between microstructure and stress corrosion cracking of high strength aluminum alloy(2)[J]. Light Metal, 1980, 6: 16-23.

                    

基金项目: 国家自然科学基金资助项目(50471057); 国家武器装备预先研究资助项目(41312020205)

收稿日期: 2004-09-08; 修订日期: 2005-01-19

作者简介: 黄兰萍(1973-), 女, 讲师, 博士研究生.

通讯作者: 黄兰萍; 电话: 0731-8830714; E-mail: christie@mail.csu.edu.cn

(编辑龙怀中)

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 主办 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:新出网证(湘)字005号   湘ICP备09001153号